Problem 2.3
(a) Not periodic.
(b} Periodic. To find the period, note that
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Hence, take n; = 3, ns = 10, and fy =1 Hz.

(¢} Periodic. Using a similar procedure as used in (b), we find that ny = 2, ny = 7, and
fo=1 Hz.

(d) Periodic. Using a similar procedure as used in {(b), we find that n; = 2, n2 = 3, nz = 11,

and fz =1 Hz.
Problem 2.7

A
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(a), (c), (e), and (f) are periodic. Their periods are 1 s, 4 5, 3 s, and 2/7 s, respectively.
The wavelorm of part (¢) 15 a periodic train of mmpulses extending from -co to oo spaced
bv 4 5. The wavelform of part (a) is a complex sum of simisoids that repeats (plot). The
wavelform of part (e) is a doubly-infinite train of square pulses, each of which is one unit
high and one unit wide, centered at ---, —6, =3, 0, 3, 6, - --. Wavelorm (f} is a raised
cosine of mimmum and maximum amplitudes 00 and 2. respectively.

Problem 2.9
(a) Power. Since it is a periodic signal, we obtain
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where Ty = 1/8 s is the period.
(b) Energy. The energy is
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(¢} Energy. The energy is
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(d}) Neither energy or power.

T it
Es= lim 6—_1.4 = 00
T—es |_1 [”_'2 | !2} !

T dt__
-1 (uﬂ_rﬂj-;"-‘

x2(t), its energy is the sum of the energies of these two signals, or E5 = 1/a.

Py = 0 since lilrl-r_m% j[ = 0.{e) Energy. Since it is the sum of z1(f) and



Since it is an aperiodic signal (the sine starts at { = 0}, we use

(f} Power.
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Problem 2.10

(a} Power. Since the signal is periodic with period «/w. we have
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(b) Neither. The energy calculation gives
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The power calculation gives
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¢) Energy:
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(d) Energy:

Problem 2.11
(a} This is a periodic train of “boxcars”,
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each 3 units in width and centered at multiples of
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(b) This is a periodic train of unit-high isoceles triangles, each 4 units wide and centered

at multiples of 5:
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() This is a backward train of sawtooths [right triangles with the right angle on the left),

each 2 units wide and spaced by 3 units:
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(d) This is a full-wave rectified cosine wave of period 1/5 (the width of each cosine pulse):
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Problem 2,17
Parts (a) through (c) were discussed in the text. For {d). break the integral for = (f) up
into a part for ¢ < 0 and a part for ¢ = 0. Then use the odd half-wave symmetry contition.

Problem 2,18
This is a matter of integration. Omnly the solution for part (b) will be given here. The
integral for the Fourier coefficients is (note that the period really is Tp/2)
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For n = 1, the integral is
A [To/2 . i A
X = sin (wot ) [cos (jnwet) — jsin (jrwet )] dt = _l =-X"

To Jo
This is the same result as given in Table 2.1,



Problem 2.20

(a) The integral for ¥y, is
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Let ¢ =1 — ty. which results in
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(b] Note that
y(t) = Acoswet = Asin (wot + 7/2) = Asin [wp (¢ + 7/2wo)]

Thus, iy in the theorem proved in part (a) here 158 —7/2wq. By Euler’s theorem, a sine wave
can be expressed as
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Its Fourier coefhicients are therefore Xy = % and X_; = 2—11 According to the theorem

proved in part (a}), we multiply these by the factor
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For n = 1. we obtain
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For n = =1, we obtain
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which gives the Fourter series representation ol a cosine wave as
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We could have written down this Fourier representation directly by using Fuler’'s theorem.

Problem 2.24
(a} This is the right half of a triangle wavelorm of width 7 and height A, or A (1 — /7).
Therefore. the Fourier transform is
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where a table of integrals has been used.




(b) Since x5 (f) = = L.[. t) we have. by the time reversal theorem, that
Xa(f) = X{(f)=X1(-f)
A 1 .
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(¢} Since x3(t) = x1 (t) — 72 (t) we have, alter some simplification, that

Xa(f) = Xulf) = Xa(f)

= 'L.ﬂim- (2fT)

(d) Since x4 (t) = x1 (1) + 22 (t) we have, after some simplification, that
Xy(f) = Xo{f)+ Xa(f)
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This i1s the expected result, since x4 () is really a triangle lunction.



Problem 2.27

(a) This is an odd signal. so its Fourier transform is odd and purely imaginary.
(b} This is an even signal. so its Fourier transform is even and purely real.

(¢} This is an odd signal, so its Fourier transform is odd and purely imaginary.
i{d) This signal is neither even nor odd signal, so its Fourner transform 1s complex.
(e} This is an even signal, so its Fourier translorm is even and purely real.

(£} This signal is even, so its Fourler transform is real and even.

Problem 2.29
(a} The Fourier transform of this signal is
o 2(1/3) 2413
X1(f) = e ..f. T 112
1+ (27 f/3) 1+ [f/ (3/27)]

Thus, the energy spectral density is

(b} The Fourter transform of this signal 1s

E 2 f
Xa(f)= :—g“ (m)

Thus. the energy spectral density is
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(¢} The Fourier transform of this signal is

Agif)= :1551'1{-. (é)

so the energy spectral density is

(d} The Fourier transform of this signal is
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so the energy spectral density is
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Problem 2.31

(a) The convolution operation gives
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(b) The convolution of these two signals gives

ya (t) = A(t) + tr (t)

where tr(t) is a trapezoidal lunction given by
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(¢} The convolution results in
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Sketches of the integrand for various values of § gives the following cases
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Integration of these three cases gives
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(d} The convolution gives
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Problem 2.26

(a) Two diflerentiations give

2y (1 15 (1
‘ :ﬂl; .t - ) S(t—2)+6(t—3)

Application of the differentiation theorem of Fourierr translorms gives
(725 )2 X1 () = (32nf) (1) — 1- 73T 41 . 7767F

where the time delay theorem and the Fourier transform of a unit impulse have been used.
Dividing both sides by (727 f)°. we obtain
e—jrf _ o—jbmf 1 e—iaw f
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(b) Two differentiations give

d2xq (1)

g =0(t)—26(t—1)+6(t—2)
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Application of the differentiation theorem gives
(127 ) Xa (f) = 1 — 27920 | ~34%f
Dividing both sides by (727 f)%. we obtain
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Xa(f) = — sinc? (f)e =j2nf

(¢} Two differentiations give

d2axs (t)
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Application of the diflerentiation theorem gives

(27 f)2 X3 (f) =1 — e~d27] _ o—J4n] | —j6n]

Dhividing both sides by Il_ffr_.l"}z. we obtain
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(d] Two differentiations give

d2xq (1) ; . dé (t — 2)
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Application of the differentiation theorem gives

(127 )2 Xa (f) = Zsinc (f) e 7 — 2e=320S _ 2 (j2x f) e~ F401
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1. we obtain

Ihividing both sides by (727
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Xa(f) =



